
LUX Hash Function

LUX Hash Function

Ivica Nikolić, Alex Biryukov, Dmitry Khovratovich

University of Luxembourg



LUX Hash Function

Outline

1 Design

2 Security Analysis

3 Implementation

4 Advantages



LUX Hash Function

Design

Design



LUX Hash Function

Design

General Design of LUX

Stream based (RadioGatun like) hash function

Big internal state - 3 × message digest

Message is processed by small (32-bit or 64-bit) chunks

Round function uses Rijndael-like transformation



LUX Hash Function

Design

The internal state of LUX

The state can be divided into two parts:

Buffer - m × 16 matrix of bytes (light transforms)

Core - m × 8 matrix of bytes (heavy transforms)

Output m Core Buffer Total
256 4 4×8 4×16 96
512 8 8×8 8×16 192

Feedforwards between the core and the buffer in each round



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Rijndael

round

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

State update function (round transformation)

Message XOR to the core and the buffer
Update of the core and the buffer
XOR of the core to the buffer
Feedforward from the buffer to the core



LUX Hash Function

Design

Hashing

... ... ...

m1 m2 m3 mk 0 0 0 0 0 0

h1 h2 h3

Three phases of hashing:

Input phase - absorb the whole message

Blank rounds phase - increase diffusion of the last
message blocks

Output phase - produce the hash value from the state



LUX Hash Function

Security Analysis

Security

Security



LUX Hash Function

Security Analysis

Multicollisions, length-extension, herding, 2-nd

Multicollision, length-extension and herding attacks
require internal collisions

2-nd preimage attack (Dean, Kelsey-Schneier) requires
finding at least one preimage for some intermediate state
value

The big internal state of LUX-n has 3n bits ⇒ internal
collisions/preimages are expensive



LUX Hash Function

Security Analysis

Collisions

Truncated differentials (see Peyrin’s attack on Grindahl)

Build a trail of truncated differentials

Complexity of the attack depends on the number of
active S-Boxes

Fix some values of the S-Boxes with the message input

The best truncated differential trail found for LUX-256
has 88 active S-Boxes where 38 can be fixed ⇒
complexity 2300



LUX Hash Function

Security Analysis

Preimages

Whole execution of LUX is invertible ⇒ try MITM attack
for preimages
Big internal state (3n) stops this attack

Try to fix some intermediate values in the buffer.
Due to the xor of the core to the buffer, only n bits
can be fixed ⇒ complexity of MITM on 2n-bit
state is 2n



LUX Hash Function

Security Analysis

Recent cryptanalysis

Free-start collisions/preimages and distinguishers (Wu et
al.)
Free start attacks on invertible functions are trivial.
Outputting the whole state at once stops the distinguisher
based on the properties of the output transform

Length extension slide attack (Peyrin)
Needs salt size to be equal to 31 (mod 32) bits. Salt size
is fixed to 128-bits in LUX.



LUX Hash Function

Implementation

Implementation

Implementation



LUX Hash Function

Implementation

Implementation results

Primitive comparation to AES (counting the number of XORs
and table look-ups) gives a speed-up of 1.2 in favor of LUX

224/256 384/512
32-bit (C) 16.7 28.2
64-bit (asm) 10.2 9.5

Speed on 32-bit can be improved with an assembler
implementation

The new Intel instruction set can improve the speed of
LUX-256



LUX Hash Function

Advantages

Advantages

Advantages



LUX Hash Function

Advantages

Pros

Rijndael-based - well analyzed transformation

Cryptanalysis can be focused only on the construction

Implementation tricks of Rijndael can be used in LUX

Speed - one of the fastest on both 32 and 64-bit platforms

Stable high speed on various processors (AMD, Intel)

Overperforms all AES based functions



LUX Hash Function

Check LUXembourg on cryptolux.org/LUX


	Design
	Security Analysis
	Implementation
	Advantages
	

