
  

Ponic
                          The third slowest algorithm submitted!

Designed by Peter Schmidt-Nielsen
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(There is 
interaction 
between the 
CSRs which will 
be explained on 
the next slide.)
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Each CSR is stepped in sequence, where stepping a CSR causes either the next or the 
previous CSR to be stepped. This has two big advantages:
1) Each CSR is stepped anywhere from 1-3 times in a data dependent way.
2) Despite this, Ponic still maintains near deterministic execution time.
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Six rounds of the 
Ponic NLF are 
performed. This 
makes every bit 
dependent on 
every other bit.

(Which is probably 
maybe perhaps just 
possibly what you want 
in such a function.)



  
Ponic( “Nobody expects the spammish repetition!” )
Note that the leftmost column of each CSR is noisy.
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Ponic( m )  Ponic( ⊕ m  1 )⊕
1) Things diffuse very quickly once the bit enters the CSR.
2) The differing bit “wobbles” due to the clocking scheme.
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Ponic Performance:

Initial published performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3        7,000-7,500
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3        3,000-3,500
Optimized-8bit            Estimate                 Estimate              Estimate           ~24,000
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      700,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      600,000 cycles

More accurate, and optimized performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3            1,600
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3             800
Optimized-8bit            Estimate                 Estimate              Estimate              ???
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      280,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that 
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I 
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed 
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.



  

Ponic Performance: (with AES instruction)

Initial published performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3        7,000-7,500
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3        3,000-3,500
Optimized-8bit            Estimate                 Estimate              Estimate           ~24,000
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      700,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      600,000 cycles

More accurate, and optimized performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3            1,600
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3             800
Optimized-8bit            Estimate                 Estimate              Estimate              ???
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      280,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that 
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I 
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed 
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.



  

Ponic Performance: (with time travel)

Initial published performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3        7,000-7,500
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3        3,000-3,500
Optimized-8bit            Estimate                 Estimate              Estimate           ~24,000
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      700,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      600,000 cycles

More accurate, and optimized performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3            1,600
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3             800
Optimized-8bit            Estimate                 Estimate              Estimate              ???
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      280,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that 
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I 
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed 
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.



  

Ponic Performance: (with a side order of Gröstl)

Initial published performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3        7,000-7,500
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3        3,000-3,500
Optimized-8bit            Estimate                 Estimate              Estimate           ~24,000
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      700,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      600,000 cycles

More accurate, and optimized performance:

Performance:            Processor          Operating System     Compiler         Cycles/Byte
Optimized-32bit   Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3            1,600
Optimized-64bit      Athlon 1.5GHz          Ubuntu 8.04          Gcc 4.2.3             800
Optimized-8bit            Estimate                 Estimate              Estimate              ???
Setup for 32bit     Athlon 2x 2.0GHz        Ubuntu 8.04          Gcc 4.2.3      280,000 cycles
Setup for 64bit     Athlon 1.5GHz             Ubuntu 8.04          Gcc 4.2.3      240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that 
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I 
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed 
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.



  

Questions?
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