

Ponic
 The third slowest algorithm submitted!

Designed by Peter Schmidt-Nielsen

Csr0

Csr1

Csr2

Csr3

Csr4

Csr5

NLF

Last
byte

Last
byte

Last
byte

Last
byte

Last
byte

Last
byte

(There is
interaction
between the
CSRs which will
be explained on
the next slide.)

CSR n

CSR n-1

CSR n+1

= 1 ?

True

False

Each CSR is stepped in sequence, where stepping a CSR causes either the next or the
previous CSR to be stepped. This has two big advantages:
1) Each CSR is stepped anywhere from 1-3 times in a data dependent way.
2) Despite this, Ponic still maintains near deterministic execution time.

A B C D E F

A B C D E F

S-box 6
(AES S-box)

S-box 0 S-box 1 S-box 3S-box 2 S-box 4 S-box 5

Six rounds of the
Ponic NLF are
performed. This
makes every bit
dependent on
every other bit.

(Which is probably
maybe perhaps just
possibly what you want
in such a function.)

Ponic(“Nobody expects the spammish repetition!”)
Note that the leftmost column of each CSR is noisy.

Csr 0 Csr 1 Csr 2 Csr 3 Csr 4 Csr 5

Ponic(m) Ponic(⊕ m 1)⊕
1) Things diffuse very quickly once the bit enters the CSR.
2) The differing bit “wobbles” due to the clocking scheme.

Csr 0 Csr 1 Csr 2 Csr 3 Csr 4 Csr 5

Ponic Performance:

Initial published performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate ???
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Ponic Performance: (with AES instruction)

Initial published performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate ???
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Ponic Performance: (with time travel)

Initial published performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate ???
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Ponic Performance: (with a side order of Gröstl)

Initial published performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate ???
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.
They are gotten from my new optimized numbers of 4,000 cycles per byte, but then I found that
my computer is actually running at 800MHz, not 2GHz, so I divided by 2.5 to correct, but then I
forgot to give gcc the -O3 switch, so then I retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

